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Abstract 
 
Besides the Wiener process (Brownian motion), there’s an another stochastic process that is 
very useful in finance, the Poisson process. In a Jump diffusion model, the asset price has 
jumps superimposed upon the familiar geometric Brownian motion. The occurring of those 
jumps are modelled using a Poisson process. This paper introduces the definition and 
properties of Poisson process and thereafter the Jump diffusion process which consists two 
stochastic components, the “white noise” created by Wiener process and the jumps generated 
by Poisson processes. 
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1. Introduction 

 
In option pricing theory, the geometric Brownian Motion is the most frequently used model 
for the price dynamic of an underlying asset. However, it is argued that this model fails to 
capture properly the unexpected price changes, called jumps. Price jumps are important 
because they do exist in the market. A more realistic model should therefore also take jumps 
into account. Price jumps are in general infrequent events and therefore the number of those 
jumps can be modelled by a Poisson processes.  
 
In the Jump diffusion model, the underlying asset price has jumps superimposed upon a 
geometric Brownian motion. The model therefore consists of a noise component generated by 
the Wiener process,  and a jump component generated by the Poisson process.  
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2 The Poisson Process 
 
2.1 Lévy Processes, Wiener Processes & Poisson Processes 
 
Poisson processes (named after the French mathematician Siméon-Denis Poisson) are one of 
the most important classes of stochastic processes. A Poisson process is a stochastic process 
defined in terms of the occurrences of events in some space. Both the Wiener process and the 
Poisson process are two well-known examples of a more general family of stochastic 
processes called Lévy processes. In fact, many stochastic processes are Lévy processes. A 
Lévy process refers to any continuous-time stochastic process that has "stationary 
independent increments". These relations are illustrated in Figure 2.1 
 

Figure 2.1  Lévy processes, Wiener processes & Poisson processes 
 

 
 
 
The awkward expression "stationary independent increments" may deserve some attention 
here. We know that a continuous-time stochastic process assigns a random variable Xt to each 
time point t ≥ 0. The “increments” of the process represent the differences Xs − Xt between its 
values at different times t < s. If the increments assigned to two disjoint (non-overlapping) 
time intervals are independent random variables, for example if Xs − Xt and Xu − Xv are 
independent, we then say the process has independent increments. For a process to also have 
"stationary increments", the probability distribution of any increment Xs − Xt should only 
depend on the length of the time interval s − t ; stationary increments for time intervals of 
equally length are therefore identically distributed. 
 
A Poisson process is similar to a Wiener process since they both belong to family of Lévy 
processes and therefore share the feature of "stationary independent increments". The main 
difference between the two processes lies in the probability distributions of increments  
Xs − Xt. That is, in the Wiener process, Xs − Xt is normally distributed with expected value 0 
and variance s − t; whereas in the Poisson process, Xs − Xt has a Poisson distribution with 
expected value λ(s − t). The parameter λ is a positive number and represents the "intensity" or 
"rate" of the process, i.e.the average number of occurrences per unit time.  
 
 
 
 
 

Stochastic Processes 
 Continuous-time Stochastic Processes 

Lévy processes 

Wiener 
Processes

Poisson 
Processes 

An Example of Poisson process:  
Nothing happens for a while, then there is a sudden 
change of state. (Willmot, 2001,p370) 
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Figure 2.2  A Poisson process with λ = 1 
 

 
 

(McMullen,n.d., available online) 
 
 
In notation, in a Poisson process the number of events in some subinterval [t, s], Xs − Xt, is 
given by 
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The occurrences of events in the Poisson process defined above can have different 
interpretations. For example, in queuing theory, the occurrences of events may be the arrivals 
of customers. In teletraffic theory “events” becomes calls or packets. Finally, in the world of 
finance we often talk about “jumps” (i.e. of stock prices) instead of “events”, λ is therefore a 
measure of the frequency of jumps. Moreover, the number of jumps is often denote by N 
(instead of X above), with N(t) referring to the number of jumps in the interval (0, t). Because 
N(0) is always defined to be equal to 0, the number of jumps N in a time interval (0, t), N(t), is 
easily derived from (2.1), 
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Figure 2.3  provides a schematic description of a Poisson process, where the arrows 
representing the occurrences of jumps. 
 



13/11/2005 

MT1410 Seminar Group: Cecilia Isaksson;   Ying Ni - 6 - 

Figure 2.3  A schematic description of Poisson process 

 
 
 
There’s one important feature that is of particular relevance to finance, that is, the waiting 
time between the occurrences of each jump follows exponential distribution (~ exp(λ)), as 
described in figure 2.4. 
 
Figure 2.4  Exponentially distributed the interarrival times  
 

 
 
Therefore, denote τ as the first arrival time, namely the time between time 0 and the first 
jump, following the above argument τ is exponential distributed with pdf 
 

tef λλτ −=)( ,          (2.3) 
 
which implies 
 
P (τ > t) = e-λt  .        (2.4) 
 
 
2.2 The Markov Property of Poisson Processes1 
 
In this section we pay attention to the Markov property of the Poisson process. Stated briefly, 
this is the 'Memorylessness' property where the distribution of the Poisson process in the 
future is independent of the past. For e.g. at time 0 the probability of not observing a jump 
                                                 
1 Section 2.2 is based on the Jan Röman , Lecture Notes in Analytical Finance One,  p 125. 
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over a time horizon t is simply exp(-λt) by (2.4). Now assume that we return to the process 
after a time s and the process is still at 0 (i.e. no jump has yet occurred). The probability of 
not observing a jump for a further time t (i.e. no jump until time  t + s) given that no jump has 
occurred until time s is: 
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This probability is recognized by (2.4) simply as the time 0 probability of not observing a 
jump over a time horizon s. This illustrates the Markov property; the fact that the process has 
not jumped until time s (whatever s might be) does not dictate the probability of future jumps. 
 
How is a Poisson process mathematically characterized? Quite simply, the value of a standard 
Poisson process after a time t has elapsed is simply: 
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In this expression, N(0) is simply the initial condition (set to zero in a standard Poisson 
process). The latter term is the mathematical expression for “the number of jumps in the time 
interval (0,t)”. Since the process jumps finitely in infinitesimal time, the time s- corresponds 
to an infinitesimal time step before time s, and where a jump is observed [N(s) - N(s-)] is 1; 
otherwise it is 0. In its more useful form, the process can also be expressed as dN(t) which 
models the change in the Poisson process over a time step dt. Using the Markov property the 
value of dN(t) at  any time t does not depend on the history of the Poisson process. 
Furthermore, 
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because dt is very small. Thus, dN(t) can be thought of as a random variable that increases by 
1 over a time step dt with probability λdt and is zero with probability 1 -λdt.  
 
Expression (2.8) motivates the following simple definitions of Poisson Process. 
 

Poisson Process: A Process describing a situation where events happen at random. The 
probability of an event in time dt is λ dt, where λ is the intensity of the process. 
(Hull, 2003, p710) 

 
or equivalently 
 

A Poisson process dq is defined by 
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λ is the intensity of the process. 
 
(Wilmott, 2001, p370) 
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Note that there’re many different but equivalent definitions of Poisson process, the definition 
given above is probably the shortest but most abstract type, that is why we did it introduce it 
in the first place. This definition is actually equivalent to what is given in section 2.1 where 
Poisson process are defined as a Lévy process with Poisson distributed increments. 
 
2.3 Applications of Poisson Processes in Finance 
 
Example 
 
Price jumps occurs for a given stock follow a Poisson process with rate λ = 5 jumps per year. 
 
(a) What is the probability that 3 jumps will occur in the next half-year? 
(b) What is the probability that 10 or more jumps will occur in the next two years? 
(c) What is the probability that it will be more 1/6 years before the occurrence of the next 
jump? 
 
Solution:  
 
(a)  λ = 5 per year, and ∆ = 0.5 year, so λ∆= 2.5 and X is distributed as Poisson(2.5), where 
 

X = the number of jumps in the next half-year. 
 
P(X =3) = e-2.5 2.53/3! = 0.2138. 
 

(b)  λ = 5 per year, and ∆= 2 years, so λ∆ = 10. 
 

X = the number of jumps in next 2 years ~ Poisson(10) 
P(X ≥ 10) = 1 - P(X < 10) = 1- F(9) = 1 - 0.4579 = 0.5421. 
 

(c)  λ = 5 per year, so the waiting time T (in years) between two consecutive jumps is  
      distributed as Exp(5). 
 

P(Wait more than 1/6 years) = P(T > 1/6)  
 = 1 - P(T ≤ 1/6) = 1-[1-e-5/6] = e-5/6 = 0.4346. 
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3. Jump Diffusion Model 
 

3.1 The model2 
 
If X is a stochastic diffusion process that jumps, then it is called jump diffusion: 
 

dNXtCdWXtBdtXtAdX tttt ),(),(),( ++=      (3.1) 
 
The first two terms are the drift and noise, where dW is a standard Wiener process. They have 
been used to model stock prices in finance. The last term introduces the possibility of a jump 
occurring. 'dN' constitutes a standard Poisson process; over a time interval dt a jump of size 1 
can be observed with probability dt. The scaling by Ct(x,t) allows the jump size to vary. This 
jump component has zero mean during a finite interval h: 
 
[ ] 0=∆ tNE           (3.2) 

 
We need to make this assumption, since the term is part of the unpredictable innovation term. 
Any predicable part of the jumps may be included in the drift component At. We assume the 
following structure for the jump: Between jumps, N remain constant. We assume that there 
are k possible types of jumps, with sizes { }kiAi ,....,1, = . The jumps occur at a rate λ that may 
depend on the latest observed Xt. Ones the jump occurs, the jump type is selected randomly 
and independently. The probability that the jump of size Ai will occur is given by pi. 
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where Jt is a process that represents the sum of all jumps up to time t. The term ∑=

k

i i pA
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the expected size of a jump, whereas λth represents the probability that the jump will occur. 
This is subtracted from ∆Jt to make ∆Nt unpredictable.  
Under these conditions , the drift coefficient At is representing the sum of two separate drifts, 
one belonging to the Wiener continuous component, the other to the pure jumps in Xt, 
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Where αt is a drift coefficient of the continuous movements in Xt. 
 
These models are becoming increasingly important in modelling stocks as they result in 
distributions with 'fatter tails' than the standard Ito processes. They are also being used to 
model energy and power prices where the jump behaviour is very often observed. 
 
The key for mathematical finance is to now derive the SDE for a function F(X). The key is to 
consider the process X as the sum of 2 processes: 
 

dWXtBdtXtAdX c ),(),( +=        (3.5) 

                                                 
2 Section 3.1 is based on the Jan Röman , Lecture Notes in Analytical Finance One,  p 127. and an extension 
from Salih N. Neftci, An Introduction to the Mathematics of Financial Derivatives, p 248. 
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and a pure jump process: 
dNXtCdY ),(=          (3.6) 

 
Then, to consider the Taylor series expansion of F(x) by first considering the contribution 
from the continuous process and then the jump process: 
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The last term arises from the jump component. [x + C(x,t)] denotes the value of the process x 
just after a jump. The majority of the times the last term is zero because dN=0. Only in those 
cases when a jump occurs the last term is non-zero and the jump in x is also observed in the 
function F. 
 
 
3.2 Practical Problems3 
 
The advantage of jump-diffusion process is that describes better the reality by both economic 
(microeconomic logic) and by the statistical time-series (explaining the skewness, fatter tails, 
abnormal movements of ex. oil prices) point of view. But there are some problems with jump-
diffusion processes: it’s impossible to build a riskless portfolios and it is difficult to estimate 
the parameters.  
 
The first problem when considering jumps in the option valuation is that is impossible to 
build a perfect hedge. So, in general is not possible to build a riskless portfolio as in Black-
Scholes-Merton contingent claims approach.  

 
The alternatives are:  

a. assume that the jump-risk is non-systematic (uncorrelated with the market portfolio) 
and so returning the risk-free interest rate (Merton, 1976);  

b. look for the minimum variance of the portfolio for hedging and valuation purposes;  
c. specify an utility function for the investor (single agent optimality or a detailed 

equilibrium description);  
d. assume that the firm is risk-neutral (some people argues that the individual investor is 

risk-averse but the firm is risk-neutral); or  
e. use the dynamic programming with an exogenous risk-adjusted discount rate, or with 

a "market estimated" discount rate as proxy.  

The second problem is to estimate the parameters. There are several parameters to estimate, 
and in general is hard to estimate the law (and the parameters) for the jump-size distribution  
(mainly because we are interested in large but rare jumps, so there is a lack of data to estimate 
the jump-size parameters).  
The two general approaches to estimate parameters in options models are: 

(1) statistical approach, from historical data; and 
(2) implied approach from the market data, that is, from the options prices (as is 

performed with implied volatility, to get implied jump-arrival).  

                                                 
3 Source has been taken from Dias, Marco A.G.’s financial web page.  



13/11/2005 

MT1410 Seminar Group: Cecilia Isaksson;   Ying Ni - 11 - 

 
For the statistical approach there are several methods, from the Classical School using 
Kalman Filter; to the Bayesian School using Markov Chain Monte Carlo.  
Researchers working with jump-diffusions processes has been using several approaches to 
joint estimate of parameters in jump-diffusion processes. Others authors take a more practical 
approach and separated the parameters estimative from these two independent processes. By 
taking out of the sample the jumps, you get a time-series to estimate the diffusion parameters 
(like volatility, and in case of mean-diffusion, the long-run mean and the diffusion speed). 
The out sample data, the jumps, is counted to determine the jump frequency λ. In this 
approach, is necessary to define jump in the data. The mean size of the jump and the 
dispersion of this size could be inferred with the data, but as the number of jump samples is 
too small, a practical feeling about the jump-size is also acceptable.  
  
 
 

4. Conclusion 
 

A Poisson process is a contiuous-time stochastic process and are one of the most important 
classes of stochastic processes. A Poisson process is similar to a Wiener process since they 
both belong to family of Lévy processes and therefore share the feature of "stationary 
independent increments". 
 
In finance we often talk about jumps instead of events, where λ is a measure of the frequency 
of jumps. A Poisson process is a pure jump process: a process that changes instantaneosly 
form one value to another at random times.  
 
The diffusion models are becoming increasingly important in modelling stocks as they result 
in distributions with 'fatter tails' than the standard Ito processes. They are also being used to 
model energy and power prices where the jump behaviour is very often observed. But there 
are some problems with jump-diffusion processes. It is impossible to build a riskless portfolio 
and it’s difficult to estimate the parameters.  
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